(5x^2+9-4)=(5x+6)

Simple and best practice solution for (5x^2+9-4)=(5x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x^2+9-4)=(5x+6) equation:



(5x^2+9-4)=(5x+6)
We move all terms to the left:
(5x^2+9-4)-((5x+6))=0
We get rid of parentheses
5x^2-((5x+6))+9-4=0
We calculate terms in parentheses: -((5x+6)), so:
(5x+6)
We get rid of parentheses
5x+6
Back to the equation:
-(5x+6)
We add all the numbers together, and all the variables
5x^2-(5x+6)+5=0
We get rid of parentheses
5x^2-5x-6+5=0
We add all the numbers together, and all the variables
5x^2-5x-1=0
a = 5; b = -5; c = -1;
Δ = b2-4ac
Δ = -52-4·5·(-1)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{5}}{2*5}=\frac{5-3\sqrt{5}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{5}}{2*5}=\frac{5+3\sqrt{5}}{10} $

See similar equations:

| 6x+2x=193000 | | 6+19t-5=9t+65-6t | | 3y(7-6)=2 | | 3x+1x=193000 | | -4/3x-1/2=2(1/6x-8) | | 3n+3=0 | | 4m-17=-17+m | | 17x+8–10x=25 | | n×-4=12 | | 0.06x=1.8 | | 8m+10=6m+6 | | y-0.75(y-100)=498 | | 2^-2n(8)=2^6 | | -5z/4=35 | | -6-11x=85 | | -7w=-14/5 | | 10x45=2x+29 | | 6/5=x/25 | | 39+f=15 | | 2s-5=40 | | a2+9a=14=0 | | y=3(-7)+18 | | (x-10)(7x+4)=0 | | g=14Q-Q2-40 | | X+11+8x=2 | | 6x+39=3x+18 | | 75x=7.5 | | 6(6x-7)(3x+4)=0 | | -v+225=99 | | 175=56-v | | 6(6x-7(3x+4)=0 | | -v+121=162 |

Equations solver categories